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An ambiguity surface is a two-dimensional function, y 2 (T,f ), which is the
sample magnitude-squared of the normalized cross-correlation eetween the observa-
tions received at two spatially separated sites as a fuinction of the relative
time delay (T) and relative Doppler shift (f ) between the observations. The
surface is generated for a specific integratlon time (T) and processing band-
width (2Wp) as shown in Figure 1-1. In actual practice, the processing band-
width is always larger than or equal to the signal bandwidth.
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I. INTRODUCTION

The use of cross-correlation for detecting and tracking the source of

signals received at spatially separated receining sites has received consider-

able attention in the research community during recent years. It is necessary

to understand the statistical nature of ambiguity surfaces and the interdepen-

dence of the cells in the surface under realistic operational conditions in

order to accurately evaluate the tracking accuracies and the detection per-

formance achievable with cross-correlation. The limited understanding of the

statistical nature of ambiguity surfaces is based on the statistics of a

single cell in the absence of signal and noise power fluctuations and for

equal signal and processing bandwidths (herein called matched containment,

refs. 1-3). The effects of power level fluctuations and signal overcontain-

ment, where the processing bandwidth is larger than the signal bandwidth, must

be quantified in order to fully understand the statistical nature of ambiguity

surfaces under realistic operational conditions. The effects of signal over-

containment have been quantified in the absence of fluctuations (refs. 4-5).

It is well known that signal noise power levels do fluctuate during

reasonable observation intervals (refs* 6-11). Signal and noise power level

fluctuations and the rate at which power levels fluctuate can adversely affect

the signal-to-noise ratios required to attain a desired performance (ref.

6). The effects of fluctuations on ambiguity surface statistics are

unknown. The study results presented in this report address the effects of

signal and noise power fluctuations on detection performance.

An ambiguity surface is a two-dimensional function, y2 (r,fD), which is

the sample magnitude-squared of the normalized cross-correlation between the

observations received at two spatially separated sites as a function of the

relative time delay (T) and relative Doppler shift (fD) between the observa-

tions. The surface is generated for a specific integration time (T) and pro-

ceasing bandwidth (2Vp) as shown in Figure 1-1. In actual practice, the

processing bandwidth is always larger than or equal to the signal bandwidth.
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Since the ambiguity surface is usually computed digitally, the ambiguity sur-

face ic quantized into cells of width AT seconds in the delay dimension and

AfD Hz in the Doppler shift dimension, where AT I 1/2Wp and AfD _ 1/T. The

actual structure and statistics are affected by power level fluctuations and

processing parameters. The accuracy with which the time delay and Doppler

shift can be estimated and the ability to detect a signal is in turn affected

by the statistics and structure of the surface.

There are many types of fluctuation conditions which depend on the rate

at which the fluctuation processes can vary. The types of fluctuations are

bounded by very slow fluctuation conditions and very rapid fluctuation condi-

tions. Very slow fluctuation conditions occur when the signal and noise

powers are unknown but remain constant throughout the observation interval.

On the other hand, very rapid fluctuation conditions occur when the power

fluctuations from sample to sample are so large that successive samples may be

considered independent. Then there is the whole range of fluctuation condi-

tions between the above two extremes. The signal model used to study the

effects of fluctuation is presented in Chapter 2. The detection performance

is described in Chapters 3 and 4 for slow and rapid fluctuations, respec-

tively. The results are summarized in Chapter 5.
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2. SIGOAL MODEL

The signal model used to analyze the effects of power fluctuations on the

sample magnitude-squared correlation coefficient (MSCC) is described. The

model is used to analyze the effects of slow and rapid power fluctuations. S -

The fluctuation model is discussed in Section 2.1. The probability law

governing fluctuations and the resulting statistics are developed in Sec-

tion 2.2.

2.1 Fluctuation Model

There are many types of fluctuation conditions which depend on the rate

at which the fluctuation processes can vary. The types of fluctuations are

bounded by very slow fluctuation conditions and very rapid fluctuation condi-

tions. Very slow fluctuation conditions occur when the signal and noise

powers are unknown but remain constant throughout the observation interval.

On the other hand, very rapid fluctuation conditions occur when the power

fluctuations from sample to sample are so large that successive samples may be

considered independent. Then there is the whole range of fluctuation condi-

tions between the above two extremes. The procedures used to analyze the

effects of fluctuations will depend on the type of fluctuation condition.

The fluctuation model is a generalization of the zero mean complex

Gaussian signal model that is used to analyze the statistics of the sample

MCC (refs. 1-5). The effects of fluctuations can be included by modeling

signals as a compared process (refs. 6, 7). In this case, signals are modaled

as

s(t) = /P(t) x(t) (2.1)

where x(t) is a zero mean, unit-variance, complex, stationary Gaussian process

independent of p(t); p(t) is a non-negative random process called the power

q process. Slow fluctuation conditions exist when the correlation time of p(t)

4
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is much larger than the correlation time of x(t), while rapid fluctuation

conditions exist when the correlation time of p(t) is much smaller than the

correlation time of x(t). Nonfluctuation conditions exist when p(t) is a

known constant in which case s(t) is a Gaussian process with variance p.

Let Z() be a two-dimensional zero mean complex random column vector with

elements z1(I) and z2 (1) representing samples from channels 1 and 2 at time

ITS for I = 1,2,...,NT. TS is the sampling interval, and T = NTTS is the

observation interval. The cross-covariance matrix of Z(L) is defined as:

-V

Rz(LIk) - E{Z(L) Z (k)) (2.2)

where EU{) denotes statistical expectation and ' is the complex conjugate of

the transpose. Let Z(L) contain spatially uncorrelated noise under the Ho
hypothesis and contain correlated signal plus spatially uncorrelated noise

under the H1 hypothesis. Then

UP (2.3)
/3() XCI) ART /IY (I) H1

where S(M) and N(L) are the independent two-dimensional power vectors for

signal and noise, respectively: X(Z) is a two-dimensional, unit-variance,

zero-mean, complex Gaussian random vector with P eJ6s the correlation coeffi-

cient between x1(t) and x2( ); and Y(M) is a two-dimensional unit-variance,

zero-mean, complex Gaussian random vector with independent components.

The sample MSCC can be computed from the sample auto-correlation

matrix. The two-dimensional positive definite Hermetian sample auto-

correlation matrix is

N

A -- Z(M) Z'() . (2.4)

5
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Let
a I 1 2 

.
A - (2 .5 )

a12 a22

The sample 1SCC is the sample magnitude-squared cross-correlation coefficient

between z(L) and z2(M) and is given by

8a1212
* : a1 a2 2  (2.6)

The PDF of P can be derived from the PDF of A by (1) performing the change of
variables indicated in Eq. (2.6) and (2) integrating out the auxiliary varia-

bles all, a22, and the phase angle of a12.

The cross-covariance matrix of Z(1) is sample independent when the power
processes are stationary. In this case,

RZ (Lk) = R (2.7):. R SRN , H 1,:

where Rs and Rm are the cross-covariance matrices of the signal and noise
vectors, respectively. Combining Eqs. (2.2) and (2.7), we have71:

RN 0 M2 (2.8a)

and

"'RS [ s' ) )E S1 ( ")2(L)lp seies j (2.8b)

6



where

E{S(Z)} = F (2.8c)

E{N(t)} =N (2.8d)

IP Therefore, according to Eqs. (2.7) and (2.8),

o = RN = I ~(2.9a)
0 N2]

R RS +R N

[E + NE{(S 1 (it)S2(LJP Be iesj(.b

E P ?2- S2 Ne

where Pkin the average power in channek k, PT is the true correlation coeffi-

*cient between the channels, and e is the phase of the true correlation between
the channels. The true MSCC is defined as:

2 1 .S() 2() 123 (2.10)

7



In the absence of fluctuation, 31c Sk, Nk = Nk, and

SiR 1 SiR 2 Ps
-T Z (SNRI+I)(SNR2+1) (2.11)

If S 1 () and S2(Z) are independent,

EUS €i(L)s(L)J E{/,(V)l E S2 ( -) (2.12)

and

(E~r&TYj) 2 (E{s tfl 2 ,2

T - 17 (2.13)
1 ( 1)( 2  •2)

2.2 Fluctuation Statistics

The two-dimensional power vectors, S(L) and N(M), for signal and noise

are modeled as two-dimensional Gamma random vectors. This appears to be a
reasonable statistical model because it is a generalization of the distribu-

tion of the observed single-site fluctuation processes (refs. 6-11). It will

be assumed that the power processes in channel 1 is independent of the power

process in channel 2 for both signal and noise.

The PDF of the signal power process in channel k is

, Sk O "0(213

fs()) a k )

fs )  =s < 0 (2.13)
k ::. 0.

8..
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where MSk is the signal degrees of freedom in channel k and Sk is the mean

signal power in channel k. Similarly,

: . M N -1:-:N C k -(MN~ / N
(ke , Nk> 0O

V = (2.14)NO0 ,N 0.''
0k

where MNk is the noise degrees of freedom in channel k and Nk is the mean

noise power in channel k. According to Eq. (A.3) of Appendix A, the mean sig-

nal power and variance of the signal power is

M S k
.Sk (2 .15 )

a (i)2/MS-
Sk°

and for the noise, we have

"I (2.16)

2y = (k)2/Mk

* Therefore, the mean powers are unbiased and the variances vanish with increas-

ing degrees of freedom.

Finally, the true MSCC is biased in fluctuation conditions. A larger SNR

is needed under fluctuation conditions to achieve the same Pi as for no fluc-

" tuations. Substitute Eqs. (2.13), (2.14), and (A.2) into Eq. (2.10). Then,

r( + 1/2) r(ms2  1/2)12 SNlS 22 1]2 1- 2  2 (2.17)
= 1 (SNR .1)(SNR +11P

1 2

9 .
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wh~ere SRk Sk/Nk. By comparing Eqs. (2.11) and (2.17), the bias factor is

r 2r es 1/2) r'ms 2 + 1/2)
*1BIAS ] .(2.18)

[ 1 2 r s1) ~4 2

Eq. (2.18) is plotted in Figure 2.1 for HS1  S S It is compared to 2

for no bias. It can be seen that the BIAS can require significant increases

in SHR.

10
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3. SIM K= uTIow

Slow fluctuation occurs when the correlation times of the signal and
noise power processes are much larger than the observation interval. In thi's
case, the power processes becomes an unknown constant but unknown. Therefore,

the slow fluctuation case becomes the case of constant but unknown signal and

noise power levels. The cumulative distribution function (CDF) of the sample

magnitude-squared correlation coefficient (KSCC) is derived in Section 3.1.
The detection performance of the sample MSCC is presented in Section 3.2. The

results are summrized, and the implications discussed in Section 3.3.

3.1 Cumulative Distribution Function

The cumulative distribution function (CDF) of the sample MSCC for known
. .,18 3 3 ' isl

2N -_ aN2z 1 -2
... ,F~pt1P 1,P2, , T

)  Pt -PlP2Ps) .

S 2 3 1)

here t is the threshold, ps is the correlation coefficient of the signal

components, NT is the degrees of freedom, 2 F 1(*,;*; , ) is the hypergeometric

function, and

"k - 1 (3.2)

Is the ratio of the SNR in channel k (ref. 1). For slow fluctuations, the

SRms are unknown constants. Therefore, the CDF of the sample MSCC for slow

fluctuations becomes

2 2 21 2(P 1 f F(M dpd( (3.3)
0

where f(plp 2 ) is the Joint probability density function (PDF) of the Pk's.

12



It is reasonable to assume that P1 and P2are independent because the

acoustic propagation conditions to the two receivers are different. There-

fore, according to the fluctuation model discussed in Chapter 2,

r(llsk + 14Nk) t4Sk-~1-p k-1

r(Msk r(mNk Cc0 > Sk4N 1

0 ,otherwise

(3.4a)
where

Ic (3.4b)

M4k is the signal fluctuation degrees of freedom in channel k, M~k is the

noise fluctuation degrees of freedom in channel kc, Sk is the mean signal power

In channel kc, and TNk is the mean noise power in channel k. The ODF of the

di Asample 143CC is obtainable by substituting Eq. (3.4) into Eq. (3.3) and evalu-

ating the integral.

EQ. (3.1) becomes, upon expanding the hypergeometric function,

~2p
2 2N-2 (NT (1+1 )p

-~F(ptIpl,p 2 ,ps,NT P2 ( 1 )k ;~p, 2
L=0 p=0 p1 (3.5a)

where (x)n z r(n+n)/r(x) is Pochammer's symbol,

Define

t(p) H J t(pjP1 ,P 2 )f(Pl)f( Pd0d2  .(36

0

13
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t(PjP2) ~ t(pIP 1 P2 p 1)dp 1

r(ms .N Hs p 1 +- 1P 2 NT (- Nl
1 eg 1~ p p 1 (l-p 2ps (ipqrims 1)r(MN 1) 1l 2 f pH M

-t 1 N M 1 2

qz0 12

according to Eq. (3.211) and Eq. (9.180.1) of reference 12.

t(p) f t(pIP2 )f(p 2)dp2

3r(ms 2 +rmN2) ms m2 4CN N ) q(Si D4q

q=qi

2 F I(NS I +411, MS 1 +P~q; Hsi +M 1 .p+q; 1-m1)

1s M 2 +peq-1 MRN2-1I 2  (p 2)

o 1-(1-OP~ P2 )~ (cont.)

14



HS HS NT (-N)(MS) 0 2q
* 1 2E T Q 1 D4G 2S)Reo

2 F F1 (MS2+MN2 , MS2 .P+q; NS2 .N 2 e+p~q; 1-<12) (3.8)

according to Eq. (3.197.3) of reference 12.

I Under the H, hypothesis, the CDF of the sample 143CC is

2S S NT2  2 I

F~pINT, Fpt~.N T

~2 1

2 F I(HS 1 +HN, HS 2+p~q; MS2 +MN 2+p~q; 1-a2) (39

where

15
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Under the Ho hypothesis,2 0, and the CDF becomes

21~ ~ ~ -1p2O,
Ftt

EQ. t (310 istesmosteeuto o h Dbo h ape18Cudr

3. Detetio Performanc

The de1) steon pefrante isquantifier the Pob h ail ofC falser alar

(A)and the probability of detection (D.These are defined as

P1 T1-F(P (3-11D tTi(.1

and

P 1z I -(P 2IN) (1 p2)MT1 (3.12)FA t TO0

These equations are evaluated for equal channel conditions where

M Mi2 M2(3-13a)

MN =N MN2  (3.1 3b)

SU SN n (3.1 3c)

8 1 k k/k (3.1 3d)

16



The performance is quantified by (1) solving Eq. (3.12) for the threshold, p,

for a specified PFA, and (2) numerically solving Eq. (3.11) for the SNR

required for the specified PD' NT, and P."

The performance is plotted as a function of NT in Figure 3.1. It is

immediately apparent that (1) uncertainty in signal and noise powers can

require large increases in SNR to achieve the same performance in the absence

of fluctuation, and (2) fluctuation effects decrease as the uncertainty

decreases (i.e., MS and MN increase).

The performance is plotted as a function of PD for various NT'S in

Figures 3.2-3.4. It is apparent that fluctuation effects decrease as MS and

lU increase. SUR is more sensitive to signal power fluctuations than to noise

power fluctuations because the required SNR is larger for MS = 2, M = 10, than

for MS = 10, Hl = 2. This effect is larger for larger PD'S (> 0.4). The SNR

C4 sensitivity to signal fluctuations follows from the fact that the PFA

threshold is independent of noise power fluctuations.

3.3 Discussion

The cumulative density function (CDF) of the sample 1SCC was derived for
Aslow fluctuations. The CDF of the sample 1SCC is independent of noise power

fluctuations under the Ho hypothesis.

It is observed that the SNR required to achieve the desired operating

point decreased as the fluctuations decreased. The SHR is more sensitive to

signal power fluctuations than to noise power fluctuations because the PFA

threshold is independent of noise power fluctuations. Slow fluctuations can

require a 4-6 dB increased SNR over the SNR required to achieve comparable

performance in the absence of fluctuation.

17
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4. RAPID FLUCTUATION

Rapid fluctuation occurs when the power level fluctuations from sample to
"-'same are so large that successive samples may be considered independent. The

i The

cumulative distribution function (CDF) of the sample magnitude-squared corre-

lation coefficient (MSCC) is derived in Section 4.1, and the detection per-

formance of the sample MSCC is presented in Section 4.2. The results are

summarized and the implications discussed in Section 4.3.

4.1 CDF of the Sample MSCC

The CDF of the sample MSCC for rapid fluctuation is difficult to derive

• because the probability density function (PDF) of the observation, ZZ defined

in Eq. (2.3), is unknown for Gamma distributed fluctuations. This problem is

overcome by using an Edgeworth series approximation to the PDF of Zt (Appen-

dix B). The only way to incorporte the Edgeworth series into the derivatives

of the CDF of the sample MSCC is to use an Edgeworth series approximation to

the PDF of the sample auto-covariance matrix (Chapter 2). The E4Ieorth

series approximation to the CDF of the sample MSCC for rapid fluctuation is

derived in Appendix C. The CDF of the sample MSCC with signal present is

G(P tINT) = F(PtIN + N (p2IN (4.1)

where

NT- 2

F(P21NT)l = (1-)T 2 k 2 (4.2)tT1t k=O* t21;tT

is the CDF.of 02 for no fluctuation (ref. 1); P? C (0,1) is the threshold; and

PtIT)1 is the Edgeworth series correction factor.
Since F( NT 1 3 T and F021

Since G(PtIKT) and F(P~INT) are CDFs, F(INT)l 0 because G(INT)l

F(1INT), = 1. The correction factor is

22



2 PIN ~ pil F( 2 I0,N -2,N 'NT,1)

+ PR F(PtI0,NT-2N,NT21

2. PRFpIT 2,T+NT+11)

+ PR F(PINTN-2 ,Nl N+,1)

+ PR F(p ,IO,NT-2 N +1 INT+1,1)

+ PR 5 F( ptI,N T -1,N.T4.1,N T +1,2)

+ PR F(p 1,1N 21
60 Ptl NTTelTTi

2

-. 9+ PR1 F(p I1 ,NT2NT + 2 ,N+2,)

+ PR1 F(PF[I2NT-2, N.e.,N +1.,)

2 2

(8e110~ t 32
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r(x+n)

' (X)n r(x4) C.4b)

is Pochamer's symbol, where the PR's are:

(Nt.1 2 2 NT-2
PR1  = CN - - (4.5a)

(NT-I) 2 NT-1 NT(NT-1) 2 NT-2
PR CN T (1-p 2 ) - 4CN NTI (1-p T ) (.5b)2 5 N T+1 7 N+l (5b

NN-i N -2
2= 2 NT P2 TINT

PR (CNI - CN5 (1-) + 2CN7(1-p2 ) T-)(NT-I) (14.5c)

PR - (N 2 .T 2 T'i
PR (cN 4 -T) - CN 5(-PT)

2 -2  NT(NT-1)

N71- T NT 1

N N-1PR5 P +
(

2012CNN+) T

PR6  = (-2CN1 + CN3 - 2CN4 ) NT(l-pT)T

+ (c 5 (3-p) - 4CN - 4CR ) N _(1-9) T (N-4.5f)
5 T 6 7 T T

pR = (ct 1 .2CM 2 -C 3  4 2)

*.. - + 2cN6 + cN,)(NT+,)(,-p(45g

: ' % "+ + - .. m + + , . . - + + + = = - + + -2 4



- * - --... * -.. -1..I-..

N N-
POR (cN 0-P 2) T 2C 102 T

8 1 T 6 2N(0t)

+2CN (
2 l 2N~ ___ 4.5h)

7PT PTNT+l

PR 2 NT(JiFR9 6 2C 6 N1(PT)

+4NN -N2~ NT (MT- 1

2 2 T T-

PR 2CN (-)NT + (2CN + CN2 1-0 )

N" -- "

2  2 NT- 2  (4 5j)7" 7 p T (1- T ) ((.T 1)"("

z 2 2 mr T'"

+ -(CN+ 2 1-PT )-CN
2 3 4PT

( 2Co 2C N ( 1 - 2c + c 2 ) ( 1 2 N.T 1
+ 2N5 pT +2N6 2T)4 7PT T

NT(N T+1) (4.5k)

2 T 2 2 NT12 ( CN TPT( -O )Cp T (pT- )

S+- (CN 2 2T )N(NT )N7l) (4.51)

PT( '- ) T=.k T: T-1

where the C-s (Appendix D) are

2 2
M 1 SNR + MS /M4, SNR2 +NS /MN2 (6a

1 1 1 '2 " "CNN. - +T NT(T+.(6-1)
HS (SR 1)2 M (SN +) 2 45)

- -2 2]
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4
C 2  1- BIAS 1/ 2) (4.6b)

1 2 SNR 1  SNR2
'C3 T 2 S + MS2 (SNR2 +I) (4.6c)

* 2

CM4  - BIAS (1 - BIAS) (4.6d)4,' BIA

C C -2CN -2CN (4.6e)
C5 3 1 C 4

CN 2~C " 2CN2-"' + CNqp  (4.6f) 0

CM6  2 2 C 4PT (.f

CN7 = CN1 + 2CN2 CN3 + CN T 4 . (4.6g)

and where

2 R 2 2
T= BIAS (SHR1+I)(SHR2 I) P (4.7a)

(ms 1 + 1/2) r( + 1/2) 2
BIAS = [r IS 2 r(MS2 ) (4.7b)

As1 Rs2 r(H51) r(ms

s k  Sk/Nk , and (4.7o)

P3 is the correlation coefficient between the signal components.

Under the H. hypothesis, Pi : SNRk 0 0. Then the CDF of the sample MSCC
.'4 becomes

2 P21
O(PtTo N F(tIT N I NI) (4.*8a)

where
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2 T'

-S7

F(P tNT)O 1 -(I1 (4.8b)

:' ~ (olT o c (tl).l "

(8NT + 10)

N T + 1 F(PtINT+1)

+ 4F(P21NT+2)o , and (4.8c)

CN 1 1 (4.8d)1 N MN1

4.2 Detection Performance

The detection performance is quantified by the probability of false alarm

(PFA) and the probability of detection (PD) These are defined as:

.1 1 1- GO 1NT)l (4.9)

D t
and

PA= 1 G G(p21NT)o  (4.10)

h2 p;22T): NG(2tNT)o are defined in Eqs. (4.1) - (4.8). These equa-

tions are evaluated for equal channel conditions where

HS M1_. z MS (4.11a)

z Nh = MN2  (4.1lb)

SNR z SIR =SR (4 .13c)1 2

27

," , r.,, ' ". • . "- •" " . 5 .. :. .. ", . . ... '.- . .... • . "~* .. . .. • •". . . . .
' # , ' , , . , , , # ~ . .... . . * . . , . , . , . 5*,'. .' . . ...... . ... . . ... . - . .. . ,.,, .* .* , . .



The equation expressing the relationship between the PFA, 2, and NT for

no fluctuation is well known (ref. 1). It is

2 NT'l
-FA = (1 -t (4.13)

By comparing Eq. (4.13) to Eq. (4.10), it is apparent that rapid fluctuation

affects the PFA threshold, pt. One of the attractions of using the sample

NSCC for detection is that P? is independent of the noise properties in the

absence of fluctuations. However, this property does not hold when rapid

fluctuations are present in the noise. The rapid fluctuation thresholds for a

specified PFA and NT are plotted in Figure 4.1 for various fluctuation

parameters. The p2 are computed by numerically solving Eq. (4.10) for speci-

fied PFA' NT, and MN. It is seen that rapid fluctuation has the largest

effect on pt for 6 < MT < 500. It is also apparent that the influence of

rapid fluctuation decreases with increasing fluctuation degrees of freedom

(MN) because the variance of the fluctuation process decreases as MN

increases, Eg. (2.16).

The performance is plotted as a function of NT in Figure 4.2. It is

apparent that (1) rapid fluctuation can require large increases in SNR with

respect to the SNR in the absence of fluctuation, (2) fluctuation effects

decrease as MS and MN increase, and (3) fluctuation effects decrease as NT

increases. This means that the perfQrmance becomes somewhat insensitive to

rapid fluctuation for large NT-

The performance is plotted as a function of PD for various NT's in Fig-

.* urea 4.3 through 4.5. It is apparent tht fluctuation effects decrease as MS

and MN increase. SNR is more sensitive to noise power fluctuations than to

signal power fluctuations because the required SNR is larger for MS = 10,

MN a 2, than for MS : 2, M = 10. This sensitivity follows from the fact that

the PFA threshold is dependent on the noise power fluctuations. It is also

seen that the effects of rapid fluctuation can be reduced by increasing NT.
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4.3 Discussion

The cumulative density function (CDF) of the sample MSCC w-s derived for

* rapid fluctuation. Due to the mathematical difficulties inherent in the deri-

vation, the CDF was approximated with an Edgeworth series.

The CDF of the sample MSCC under Ho is dependent on the noise power

fluctuation parameters. Consequently, the sample MSCC loses some of its

attractiveness as a detector because the PFA threshold is dependent on the

fluctuation parameters. This is in contrast to the CDF of the sample MSCC in

the absence of fluctuations where the CDF is only dependent on the noise

degrees of freedom.

It is observed that the SNR required to achieve the desired operating

point decreased as the fluctuation decreased (i.e., MS and MN increased). The

" - SNR is more sensitive to noise power fluctuations than to signal power fluctu-

* ations because the PFA threshold is affected by the noise power fluctuation.

Rapid fluctuations can require a 3-4 dB increase in SNR over the SNR required

to achieve the comparable performance in the absence of fluctuations.
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5. CONLUSIKS

A detailed analysis of the detection performance of the sample magnitude-

squared correlation coefficient (MSCC) in the presence of fluctuations has

been presented. Fluctuations can be characterized as slow or rapid, or as

anything in between. The fluctuation process samples are completely corre-

lated over the observation interval for slow fluctuation, while the fluctua-

tion process samples are completely uncorrelated over the observation interval

for rapid fluctuations. These two bounds on fluctuations can be studied

analytically. Simulation is required to study fluctuation processes with cor-

relation times that lie between the bounds.

It is concluded that fluctuations require a 3-4 dB increase in SNR for

rapid fluctuations and a 4-6 dB increase in SNR for slow fluctuations over the

SNR required to achieve comparable peformance in the absence of fluctua-

tions. In all fluctuation cases, the required SNR decreases as the fluctua-

tion becomes "less" random (i.e., the variance decreases). However, the

j effects of slow fluctuation are basically independent of the signal time-

bandwidth product (NT), while the effects of rapid fluctuation can be reduced

by increasing NT.

The threshold (2) is independent of the noise fluctuation process

for slow fluctuations, but it is dependent on the fluctuation process for

rapid fluctuation. It can be concluded that t is dependent on the fluctua-

tion process for all aorrelation times except for slow fluctuation. The

dependency of 2 on the noise fluctuation process decreases as the correlation

time of the fluctuation process increases.

The SNR for rapid fluctuations is more sensitive to noise power fluctua-

tions than to signal power fluctuations for all fluctuation processes with

correlation times less than the observation interval. This is caused by the

fact that (1) pt is dependent on the noise fluctuation process and (2) some of

the noise dependency is accounted for in selecting p2. On the other hand, the

SNR for slow fluctuations is more sensitive to signal power fluctuations than
to noise power fluctuations.
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Appendix i
I GAMhI DISTRIBUTION

The normalized Gamma probability density function (PDF) is the standard

Gamma PDF normalized so that the mean is independent of the degrees of free-

dom. The normalized Gamma PDF is

-Mx/x14-1 0
x , x>O

f(x) x (A.1)

0 , x 0"'

where M is the degrees of freedom and xo is the mean. The cith moment of x is

M E(x3)

xH _..1 'x/Xo
1 d +C-e

(x0//M) r() 0x

r(iax (A.2)

Therefore, the mean and variance are:

= M 1 x (A.3a)

/x = H X /M (A.3b)

Note that the variance vanishes as M+-.

Let x and y be two independent Gamma distributed random variables with

degrees of freedom Mx and M., respectively, and mean xo and Y0 , respec-

tively. Define the random variable

z = x/y • (A.4)
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What is the PDF of z? Define the auxiliary variable w =y. Then the Jacobian
* of transformation from (xy) to (w,z) is

1/y , -x/y
2

J(x'y) 
- /y =1/vw 0

Then,

f(zw) =wfxyCZv,w)

and

f~z =f~zu)dv / wfxy/xw,w) dv (A.5)
0 f

Therefore,

H -1
zx* ~~~f(z) = (ii"xrM x/~M (

4 y

a* M +M -1 -(M xz/x +M /y )Ww

r(mx+H) m

(1+aZ)(A. 6a)

0 z 0~

where

-K 
(A.6b)
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The mean and variance of z are:

0 - I1 forM 1 > (A.7a)
y Yo Y

2o r. -, (M, for I > 2 (A.7b)
Oz Wzy 2 y

Define the random variable

p ___ (A.8)

What is the PDF of p? It is easily shown that

f(P) .z--E (A.9)"(1o)2

Substitue Eq. (A.6a) into Eq. (A.9). Then,

r() r(x +Hy I x M0 ' o<0<1_ ..

( = y (1+(c,-1)p) x y (A.O)

0 , otherwise

The B'th moment of p is

I (B) E(p8 )

.. r(M .) r(M .).- &*y) ( ?x+o+ I 2F (MH +Hy, IN+0; ?H& + + ; 1-C) (A.11)

r-y TH %JIm y +1) 2'1X y' x y

according to Eq. 3.197.3 of Reference Al.

:A
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Appendix B

SED EWORTH SERIES FO COMPLX SPHERICALLY INVARIATE RAiWDC PROCESSES

The derivation of the Edgeworth Series for complex, spherically invariant

random processes is presented in this appendix. A random process is spheri-

cally invariant if and only if it is a zero-mean Gaussian process that is

multiplied by an independent random variable (Ref. B.1). The derivation of

the Edgeworth Series for a specific type of spherically invariant random pro-

* cess is obtained by (1) computing the moment generating function, (2) comput-

ing the cumulant generating function from the moment generating function, and

(3) finally identifying terms.

B.1 Process Description

Let Z = (zz 2) be a two-dimensional, complex zero compound process

described as

jzk / STx +A 47 (B.1)kkk k Yk

* ;., where Sk and Nk are independent, non-negative random variables called power

processes, which are also independent of xk and Yk; xk and Yk are independent,

zero mean complex Gaussian random variables with unit variance; P. is the cor-

relation coefficient of x, and x2 ; and T indicates transpose. Given Sk and

Nk, Z is a two-dimensional, zero mean, complex Gaussian random variable with

covariance matrix

R (B.2a)

"r (B.2b)

S2 2
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where * indicates complex conjugate. Therefore, the probability density

function (PDF) of Z, given the power process, is

1 -Z'R- Z
f(ZISI,, MIM 2  2R/ e (B.3)

where ' indicates complex conjugate of the transpose. Finally, the PDF of z

is

f(Z) = E{f(ZISIS 2 ,NI,N2 )IS2NN (B.4)

where E{-}S1 ,S2 ,N1,N2 is the expectation over S 1 S2 N1 ,N2 .

B.2 Moment Generating Function

The moment generating function, given the power processes, is

Mz(*Is1,S2,N1,N2) e (B•5a)

where

(T * (12)T (B.5b)

Expand Eq. (B.5a):

Mz( Is1,S2 ,,N 2 ) exp {r 11 112 + 2121 + 2/SS Re(ps$ 1$2 )

2CZ,k,q,p
9, =0 k=O q=O p=O

k-p+q -q-p 2- k -q+P -q+P
*kp2 2 (B.6a)
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where

C r9.' (.k )k(S S 2 k-p pp 9.-k-q q (B.6b)
9.,kpqpp k q p 12 l ~2 s

and (t) is the binomial coefficient. From the discussion in section B.1, we

q know that

M MzO E(M z(*IiS 2 ,Ni,N 2 )}S 1S 2,N1 ,N2

(B.7a)
9.=O

where

9.9.-k k
Pow ~~ ~ .kp~q *Lqp 1kq+poq+p (.bAE E FCtkqp k-0 0
k=O q=O p=O

l9,kgq,p k q (B.7c)

mk~cO) ~ra- 0/2(B. 7d)

B.3 Cumulant Generating Function

The cumulant generating func tion is

K in (MzC*))

* = 9n (1 +kw

(ij (W)U

-'- (-1)U+ ul (B.8)

u: 1
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where Mz(O) 0. In light of the discussion in section (B.2), Kz(O) can be

expanded in two ways. First,

K = r(s) (B.8a)"'" r
r= 1

p where

uvxy U V X( Y (B.8b)r ulvixty" 2
u+v+x+y=r

is a polynomial of rth order, and

au+v+x+Y

KXuvxy - u Kz($) (B.8c)uvxy u v OY zy

1 1

The second way is to substitute Eq. (B.7) into Eq. (B.8):

( 1 )u+1 (B.9)

Only terms up to r=4 in Eq. (B.8) will be considered because of the com-

plexity of the problem. By expanding Eqs. (B.8) and (B.9) and identifying

- terms, it follows that Q's are related to the P's in the following manner:

0)= 03(0) = 0 (B.10a)

V = P1 (*) (B.lOb)

00) = P2 ( 0)  2 (B.lOc)
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Also, the X's are related to the C's according to the following:

e2( )X's

2000 0200 O020 = X002 = 0

X1010 x 0 10 1 = 0

10 C1 1 0 0  
(B.11)

0011 Cl 10 1

'0110 = C10 0 0

X1001 = 1010

'2200 'C2 2 0 0  " 1100= - 2C1 1 0 0 -
1

==
x0022 4 ~C 22 02  210

-I2 0  -2 '

x 0220 "qC2000 -2C 10 0 0

-=2 x2002 4C2 0 2 0  -2= - 2C1 0 1 0

X1 2 1 0  = 2C2 1 0 0 - 2C1 0 0 0 C 10 0  (B.12)

4g,

x 0121 2C2 10 1  -2C10 0 0C1 10 1

2: . j21 10 2E 10 -

2101 10 010C1100

1012 2C2 1 1 1 - 2C10 10C110 1

(cont.)
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C2 0 10 C2 2 0 1 -6110A101 -C1000C1010

and all other X's = 0.

Substitute Eq. (B.7) into Eqs. (B.11) and (B.12). Then,

x.1100 = m(1, 0 ) E{r1}

S.001, m2(1,0) = E{r2}

S0110 = mi(o,1)=2(o,1)p = E{ 1 EW}P,

N 1001 - -0110

4 ) 2200 2(m1(2,0) " 1(1,0)2)

'00 =  2( 2(2,0) " 2(1,0)2)

)'20= 2-102)202 - =1012 2 0 1 2 2 (B.13)

002 = 220

x 1210 2(m1(1,1)=2(0,1) - 11,0)m1(O,1)m2(O,1))P s

2101 x12 10

'0121 = 1(01)m2(111) " 2 (1'0)m 1 (0,1)= 2 (0,1))0s

"" )1012 "0 )121

-7;11 = (m1(0,2).2(0,2) " 1(0-1)
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4 Therefore,

K z() el() + 2(M)

S110012 + )°°111122 01101Y2 01101 2

220 0 14  X022
+ i 2

x 022 *2 2 + X02202 .2

4 1e2 4 v 2

"110 + 1210420122
02 122 2 12 22

+ +xl 1, 1121, 212 (B.1'4)

B.4I Edxeworth Series

Let 1 00 10( 
.5li Ol" (B.15)

.0 110  0011
r 11l r 12 l

. r1 12 r2 2

Then,

K (M
"(S) e 

(B.16)
z
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Substitute Eq. (B.14) into Eq. (B.16):

e02() e4 () _2 __)e4 (B.17)

* .'" Using only the first two terms of the series expansion for the exponential,

(1 + 00 )e4-41 '2
+~ '200 14 + '0022 14

4 6 2

X0 22 0 *2 2 0220 2 0

4 1 2 + 4 2
S

X12 10  *2 x 1210 2 0
2 -' *1 2 + 2 1Y2

a

X0121 2 0 X0 12 1  2
+ 2 Y 2 + 2 A2 2

+ Xl11 1 212 e 'R (B.18)

It is easily shown that

I" Ie 2 e (B.19a)
arl 1

4AI, 1 R Ib B2 e *, B 1 b .l

.r22

: 2 2 'R" 12 e " a2 e"' (B.19o)-,
*'-*. ar122-

2 *2 - 2 e*,}'  (B.19d)

-J 23
2312
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J K.. 2 *'Ro a (B. 19e)
4 1 02e 3 r1 1ar12

2 -0 e (B. 19 )

11 12

0# 2 0 e aR 2

IO = 2 eV 02 8 a (B. 19g)

*1*": - ar2 2 ar12

0 2  e '  (B. 19h)

ar22 ar12

!2

I1 1212 12eoRo ar a e* .
'  (B. 191)

1rl1 ar22

Substitute Eq. (B.19) into Eq. (B.18). Then,

M( F 22oo a2  '0022 a?

S'" 4 2 4 a2
2r 12

'022o a2 4220 a2
4 - 4 s

12 ar 12

2 21210 a 1210 a2

t11 12 2 ar1 ar 2

o0121 a2  0121 a2

2 a 3r 2
22 12 ar ar.. 22ar12

a2

a2 e'R (B.20)
"::ar at1 at22
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The probability density function of z is obtained by taking the inverse3 Fourier transform of Mz(O). Taking the inverse Fourier transform of

Eq. (B.20), we have

'2200 a2  2200  a2
g(Z)

"~ g(r = +2 + 4 a2 -
m 11 22

020a 2  x a

0220 0220
4 ,2 4 2

ar ar
12 12

MO2+ a2  12 10  a2

11 12 2 r ar
11 12

.0121 a2  
12 1  a

22 12 2 ar2ar
22 12

::-a2

+ ] f(z) (E.21)
1111 11 22

where

;;i: r~z) = 1 -z,i-Iz,.":
(Z)1/2 e (B.22)
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Appendix C

EDGEWOITH SERIES FOR THE COUTIVE D~MITT FUTIOU OF

THE MSCC FOR A SPHERICALLY IMVARIAMT PROCES

The derivation of the probability and cumulative density functions (PDF

-and CDF, respectively) of the sample magnitude-squared correlation coefficient

(MSCC) is difficult for non-Gaussian signals. The Edgeworth series for the

PDF of the sample MSCC will be developed for signals that are spherically

invariant. The approach used is to derive the PDF of the sample auto-

covariance matrix of the observations and then make a chnage of variables to

obtain the PDF of the sample MSCC. The processes involved in the derivation

are described in section C.1. The derivation of the characteristic functions

and PDF of the sample auto-covariance matrix is presented in sections C.2 and

C.3, respectively. The PDF of the sample MSCC is obtained from the PDF of the

sample auto-covariance matrix in section C.4. Finally, the CDF is obtained in

section C.5.

C.1 Approach

Let Zt be a two-dimensional zero mean complex random column vector with

elements zl(L) and z 2 (L) representing samples from channels I and 2 at time

LTS for I = 1,
2 ,...,NT. TS is the sampling interval, and T = NTTS is the

observation interval. The cross-covariance matrix of Z(L) is defined as:

Rz (L,k) E{Z(,) Z,(k)} (C.1)z

where E{'1 denotes statistical expectation and ' is the complex conjugate of

the transpose. Let

where S(,) and N(M) are the independent two-dimensional power vectors for

signal and noise, respectively; X(I) is a two-dimensional unit-variance,
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.j .

zero-mean, complex Gaussian random vector with PRe as the correlation
* coefficient between x1(I) and x2 (t); and Y(M) is a two-dimensional unit-

variance, zero-mean, complex Gaussian random vector with independent compo-

nents.

Given Sk and Nk, ZZ is a two-dimensional, zero mean, complex Gaussian

random variable with covariance matrix

[ 1  12

A'S Sp S r
r 2 Ps

- v' Ps r2 I

where * indicates complex conjugate.

The exact form of the PDF of Zq is unknown. However, the Edgeworth

series form of the PDF is known (see Appendix B). The PDF of ZZ is

(Zt) = (1 + P) f(Zt) (C.3)

where

p C1 32 C2  a2
4 = r2 + T 3 2

3r1 1  3r2 2

+=2 32 2 a2]

4 P 3r 2  a r* 2* C [r12 12
=l=.- II [ + • 2

+'- Ps a 2 P a arl2 i

["sr r(cont.)

.p5

I',I
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. a . - -, o . -s_ -. -. ' -. -. - . , -. -, . . ... ,..j . . , .. . , ". .,.. ... . .

+ I c 1 a2  2 1

.e6Crar (C.4)
11ar22

C1  2(m(2,O) - m1(1,0)2) (C.5a)

C2  = 2(32(2,0) - =2(1,0)2  (C.5b)

C3  = 2(m,(0,2) m2(0,2) - m1(0,1)2 .2(0,1)) (C.5c)

C4 a 2Lm1(1,1) 2(0,1) - m,(1,0) mj(0,1) m2(0,1)) (C.5d)

C5  = 2(m=(0,1) 32(1,1) - .2(1,0) m1(0,1) 32(0,1)) (C.5e)

C6  
= m1(0,2) m2(0,2) - m1(0,1)2 32(0,1)2 (C.5t)

{= E{rS } (C.6)

r(zL) e _1__2• (C.7)

ErE{,/: 1 2  [r rl~ c8E {V i'{s- 2) P0 E{r2} '112 r22

The sample MSCC oan be mcputed from the sample auto-correlation

matrix. The two-dimensional positive deftinite Heretian sample auto-

oorrelation matrix is

A A lT (C.9)
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where

i~
A, - (C. 10)

T

Lot

[a. a12
A = a; a2 1  

*(C. 11)'12 '22

The sample NSCC is the sample magnitude-squared cross-correlation coefficient

between z1(L) and z2 (t) and is given by

a 1 a1 22

The PDF of p2 can be derived from the PDF of A by (1) performing the change of

variables indicated in Eq. (C.6) and (2) integrating out the auxiliary varia-

bbles A,,, A2 2 , and the phase angle of a12.

C.2 Characteristic Function of A

jThe characteristic function of At, using the Edgeworth form of the PDF of

Z , is

? E eJiTR(*At N T1
K (*) Ej LT

- NA 1

E {ezi(*/N T )z t

(- e. (C.13)

wh er- JII-

"where JI- Ji -I is the characteristic function of At assuming the PDF of ZI
* is f(Zt) as defined in Eqs. (Ca) through (C.8),

.5



i :  ,=[ *11 '12 1
* = 1212 22

[ I.

-. Substitute Eq. (C.4) into Eq. (C.13) and carry out the indicated partial dif-

ferentiation. After some tedious algebra,

H&(*) D-1(1 + C2 (C.14a)

where

D = IT - . (C.14b)

.0 N T

Sz Q1 + C3 (C.14)

2  C2  2
2 ', 22 + 2- r ll

j~ ~ 42 +(~~4 P:2 2a

2

(- CI(Irs 2 22  + P9s12 22

C5(PsP1211 + P(pr12r22)
312 12

+ C6I 1(rllr2  L+ 1r 2 2)(C 114d)

6 c1r2 2*1 1 " c r11 222

Q3 1 2r112

+. +C ( rfr , + p2
3 ',3 " 12 1212 2

4 c r("2 01 1 + Pr 1201 1  (P* 1  r22 + P 1 2r 2 2 ))

(cont.)
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+ C(Pr* +r* +( ' +POr
5 s122 pr12'11 -ps1!2r11 s12r11)]

. 1lIs12(r 11  + r222 _ r12 1 2  r 'i2l2] I (C.14e)

.% 
1 02 2 2

Q 3 2 -11 + T 22

+ C p 12+ p' 2 02 )
3 . 2 12)

+ C3(Ps +

+ C (P* 1 + P * )
5 12 22 s01222)

+ C1l2(#l# * , 2 1 (C.1'4f)

61 1 22 +112 N 2lT

Since the At's are independent,

Substitute Eq. (C.1Ia) into Eq. (C.15):

AA
'C3 l DNTy1 + ntQ/i

"ieNT - (NT+2)
= D + NTQD (C.16)

5
~C.3 Probability Density Function of A

; The PDF of A is obtained by taking the inverse Fourier transform of KA(*)

4.4*given in Eqs. (C.14) - (C.16). The inverse Fourier transform of D-N is the

Scomp lex Wishart

=f(AINT) = C(NT) V(AINT) (C.17a)

'4 .
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where

IV(AINT) 1NTT(AS (C.17b)

*4. (N) NT N (C. 17c)

1: 1 : 12 ] 
C 1 d

312 s22

which was derived by Goodmian (ref. C.1). Correspondingly, the PDF represented

by the characteristic function D-(N1 2 ) isfAN+2).

By making use of the fact that the inverse Fourier transform of *LkD-NT

can be obtained by (3'/3aczk)f(AINT), the PDF of A can be obtained from MAW*
1.by taking the proper partial derivatives with respect to the alk of

f(AjNTy+2). Therefore, substitute Eqs. (C.17) into Eqs. (C.1d) - (C.16) and

perform the indicated partial differentiation. After much tedious algebra,

g(A) z M(INT) + NTU(AINT) CC. 18a)

where U is the correction term of f(AINT) which is the PDF of A for Zt complex

Gaussian.

M(INT) = UlCAINT) + U2(AINT) + U3(AI NT) (C.18b)

4 AIM)1 2CC _ C 32 2 2 2
N U (AIN. 2 T 22 1 3 (pr +pIsT 1 T- '222 2 1 2 s12 1~r2)

a 1P r2 + 5 1 2 )(C~r 2 2 + C5 r 1 1 )

+ C6 5 2 (r r2  + 1r1  2
61P1 2122 12

N TI(N T 1) 2NTTR(AS) +TR(AS) 21
(cont.)
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C(N T + 2) N T (MT -1)VAINT)

(2N + 1) jS( 2(S( TR(AS)f

C(NT + 2) NTVAIAT + 1)

+IS12C(N T + 2) V(AIN T + 2) (C. 1Bc)

N3U (AIN) Cr [(N - 1)a -aRA)

T2122 ( T 22 a2 2 (S

(N T + 2) N T(N T -1) V(AINT

- INsl- a 22 1SI - s1,TR(AS)J

C(Nr + 2) Nr V(AINr + 1)

j - ISIsiiC(NT + 2) V(AINT + 2)}

-c r [~(NT - 11l - aRA~
2 11 ~aiT(A)

qC(NT + 2) NT(N T- 1) V(AINT)

-[NT 2 - al1131 - s22TR(AS)J

*( C~T +. 2) N TV(AINT + 1)

-IS1322 CQlT + 2) VAINT + 2

+ C(p 2 + P3r1

± 2 
2
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C(NT + 2)N NTT - ) V(AINT)

-INTS11 - a 22 1ISI - 3 11 TR(AS)j

C(NT + 2) NTV(AINT + 1)

- ISISllC(NT + 2) V(AINT+ 2)

5 +12 + 12)

{1(N T - 1)a11 - a11TR(AS)I

C(NT + 2) NT(NT - 1) V(AINT)

N 1T S22 - a11ISI - S 22 TR(AS)J

C(NT + 2) NTV(AINT + 1)

- SIS 2 2 C(NT + 2) V(AINT + 2)

9 " - (C4r 2 2 + C5r1 1)

S li. {IalS11 (sa1 2 + p, a12 )

+ a2 2 S2 2 (p~a~l 2 + Psa 12)

.,+ la 121 2(pss T2 + OsPl2 )

+ ( ps ,2 + Ps 1 2 )

p a12s 12 + 12 1 2)

* ' - (NT- 1)(psa!2 + pa 12 )l

C(NT + 2) NT(NT - 1) V(AINT)

(cont.)
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Ai

+ as (p2 +pS 12

.a 22s22(PsS12 + ps] 2 )

1,21V(% 8a 2  pa12)

m2

- NT(PsT2 + 12)

- ISI(Psa 2 + psa12)

C(NT 2) NTV(AINT + 1)

C(NT + 2) V(AINT + 2) }

I(NT - 1)

(a11 r22 + a2 2 11 + 2 a rAa 2 )

11 2 2 11 12 12 12 12)

2 2-(a 11s11r 22 + a22 s22r1 1 -

- a la 22 (slr 11 + 22 r22)

- (a11 2 2 + a22r1 1 (a12s1 2 + aT2s12 )

(aa 2 2  )(r a6  + r a1(a1 S11 + a 22 12 12 1*2 12)

- la1212(r12s + r s22)

12a12s 12 12

1212 12 1212 12
(cont.)
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C(NT + 2) N T T .1) VAIN T

"NT(r1 1 + ' 2+ '12 12 '12'12)

+ (a 1S22 + ISI)(a 11r22 + a2 2 r 2 2 )

2 rl+ 2+a 11s 11 + a2 2s22r2 2

+ (rlls 11 + r22s22 )(a12 12 + a 2s12)
+ (aS1 1 1 1 +a 2 2s 2 2)(r 12s1 2 +lr 2s1 2 )

+ (r s'2  + a ' s a' +);-' ,2

", + (r12 12a12 12'121 2)

4"+ ( 12 _ S ra' + r' a
(112 12- IsI)( 1 12 12 12)1

C(NT + 2) NTV(AIVNT + 1)

- 1ISI(rlls11 + r22s22 + r12s2 + r!2'12)1

C(NT + 2) V(AINT + 2) (C.18d)
* C

N U(AIN a22 C(NT + 2) NT(NT - 1) V(AINT)

-2a2 2s1 1C(NT + 2) NTV(AINT + 1)

+ 21C(NT + 2) V(AINT + 2)

" 2{ 2

+- a C(N + 2) N(N 1) VAIN)

IN + s 22C(N + 2)AINT( 2) (c1)
(cont.)
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-C3. 2 2 .2 2

+ "-(pal + Ps a12 ) "

C(NT + 2) NT(NT - 1) V(AINT)

+ 2s 12 12 + ps2 12s12 "

C(NT + 2) NTV(AINT + 1)

-i + (2 .2 2 2.
s1+ P2 s 2)

C(NT + 2) V(AINT + 2)

-p P~12 psa 12 )(C4a22 + C5a11)

1 C(NT + 2) NT(NT - 1) V(AINT)

+ (p a*1 +Cs
+ Pa 12 )(C4s11

+ C5s22

(PsS2 + Psl 2 )(C4a2 2 + 5al1)1

C(NT + 2) NTV(AINT + 1)
U

+ (Ps12 + Ps12)(C4si + C5s22)

C(NT + 2) V(AINT + 2)

SC 6 1ps 2 {(a + la1212)

C(NT + 2) NT(NT - 1) V(AINT)

(allS11 + a22 s22 12sT2 a3212)

C(NT + 2) NTV(AINT + 1)
.'- (cont.)
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(s 11 s22 + Is312 12)

C(NT + 2) V(AINT + 2)~ (C. 18e)

g CA Probability Density Function of the Sample MSCC

The PDF of the sample 143CC, p2, is obtained from the PDF of A by (1) per-

forming the change of variables indicated in Eq. (C.12) and (2) integrating

out the auxiliary variables all, a22, and the phas~ angle of a12 - Performing

this operation on Eq. (C.18a), we have

g.(2) f(P2IN T + N T (P IN T (C.19)

* where

f(I~-2 N T 2NT2
(NT T )1(

2 1(T NT; 1; p2 2T (C.19a)

is the PDF of P2 for no fluctuations and Gaussian signals (Ref. C.2); i(92INT)

* is the correction term resulting from the Edgeworth series; and

r212  (E! 1  212 p1

T r 1 1 r2 2  -(E~r 1}) 2(E{r 2} 2
(.9b

Since f(p2IN T) and g(p2INT) are PDF's, i(U9INT) must integrate to zero.

Perform the indicated change of variables on UCAINT) in Eq. (C.18) to

obtain f(p2INT). After much tedious integral evaluation and algebra,
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-- . .' . .4.. + , . o , . -

ra f'(PINT) -PR1(1 - o2)NT-2  Fl(NT,NT;1;p2p )

2 2 F 2 .2

PRJ( P 2 F l(N T~l~pT;P

+ PR(1 - 2 FI(NT,NT+I; 1; p 2 ) .'2

22 1T~T' T

4>, PR.1 -2 NT F2 2

i+ PH30 - p -2 1, (NTNT +2;1;p P T
2 - 2  

2 2
+ p (1 .. p 2FI(NT+1,NT+I;1;p p)

+ PR(1 - p 2) T  F (N + I ,N T + I ; 1 ;p 2 p2

5I 2 1 T ....

+ PR p( 1 - 2 I (NI,N+2 I;OP ) 2 2 -

NT -.1

2 T 2 2

+ PR1 (1 -O2 ) 2F(NT+2,NT+2;1;p2 p2)
6 P~p(1-p)T2 1F (N + T+ ;T p~

'4,+ PRg 2 (C1 - p 2 N -2 2((C+ 1 .T 1 ; ;p )2

2N T -2

P PC 7T2 (1 - 2F  (  NT+2 T;(;p p

( 2-(NT+2,NT+2 3 T

(N T I )2 2 T - N 2
S(1 -

(N'12 2 2T- T (TI 2 NT2

CN (-0 - 4CN7  NT T T (C.21b)

N. 2

Na -2
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N N-1
PR 3 (ci 1 0 p2 T -N 5i (1 -p 2 T

N T 52 TN_

+2CN 7( 0 PT) NT~ (C.21c)

PR ~ CN4(0 2 ~N T -N N(1 2) 2T-

+ 2CN (1 - 2Tj NT(NT-1) (C.21d)

24T

PR ( +i +2CN) NT2  -i

P5 5 6 NTel (1

2CNN.( (C.21e)

2NT
bPR 6  (2CN 1 + CN3 - 2CN 4  N T(l - T

N -1
+ (C ( - -4CN C) NT _P T (C.21f)

2
PR 7 (CN1 + 2CN 2 - CN 3 + CN 401+ pT)

2NT
* - ~CN5 + 2CN6 + CN7J(Tl (C.21g)

PR8  (C - 2 T C 2T

+ 2CN p 2(1 - 2 NT 2  NT(NT (C.21h)
7 T T N N+1~
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P -2CN6 (NT )(1-PT) 2T

N -2 NT(NT-1)
+ 4CNN T ) TT (C.211)

7NTT NT+1

PR 0- 2NT + (2CN 2 + CN (1 -2 ) NT-1

"10 = 3'T +p (N 5PT +N 6 )( T

N -22 2 T .
- 8CN PT(1-P) T) N T(N T-1) (C.21j)

27T, T T T
PR 11 OCN2 - CN 3 + 2CN 4 p T(lpp)

+ (2CN P2 + 20 - 4 )(1"" '

5 T 6 T 7 T T

- NT(NT+l) (C.21k)

+•T TPR (CN-p 2 )NT 2 N 2  NT-
12 2 T 6 C 6 T( T)

+ CNT T T NT (NT+I)(NT-) (C.211)

and

CN - C (C.22a)

Cli2 2 2
2r 11  2r2

CN-c c 3 l 12 p C2b

(... cN2 r• 2r '.C4 s  (C 22c)

.. 3 2 ( 3/2 1/2 1 /2 ,32 (C.22o)

11 122 61 22
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C 1 C2 C C5

5i ~ 2 2 r3/2 r112  r 1/2 s3/2 ,
11 22 11 22 11 22

C6

r r 11r2 2 I% (C.22)

C1  p C 2  C 4 P1T
CN -

S.1k C 6., . r22 r 3/2  r 112 r3/21
' 11 "22 ' 122

SC6 C

+2 _ P 12 (/2' 'Ps
r3/ r2 1/2

"r 1 1 r22  r 1  23 /I 2_ T72 1/2 3/

+rC 6  2- ) (C.22g)•r :? 11 r22 T

C.5 Cumulative Density Function of the Sample MSCC

The CDF of the sample MSCC is

A "%

G( 'INT t f~ I t(pj) d02 (C.23)
0

- where 0 < < 1 is the threshold.

Substitute Eq. (C.19) into Eq. (C.23). Then,

G(P?-INT F(P?-INT + N(PtT (C.24)
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~o

where

N -2
*2 2 T 2 k 2F(PtINT) N (-- 2FI(NT,k+1;1;PtPT) (C.25)

k=O
2S

is the CDF of p2 for no fluctuation (Ref. C.2); and
2
Pt

g(Pt INT) =  f(p t INT) dt

Define

(p 2 ,; P22 (C.26a)

Ptf(p2 Iey 1p~ 2 1 8,~

and
2

,F(potl,,e, ,y) l a,,*,,y) dp (C.26b)
r.o

F(p2INT) has the sane form as _(p2 ,NT), Eq. (C.20), where the function

j(p 2 1C1,O,e,o,y) is replaced by F(p~IQja ,*y)

Substitute Eq. (C.26a) into Eq. (C.26b) and expand the hypergeometric

function. Then, 2
-(8) W )P 21 Pt

P2 (x+t) (1-p2)8 dP2  (C.27)

1=0 o
where

(?)n =r(x+n)

n r(x)

is Poohamner's symbol. From reference (C.3),

u-i x~n-i (n-1)l I.m n-1(-y)kk,
x(1-x)n' dx = (k1 .+K-1)! (C.28)

0
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Substitute Eq. (C.28) into Eq. (C.22). Then,

my mt (1-.P 2k

F'p'Qc togo* y) -j 2(OQ+ ( (2p2)L'1 t (t1+k+t) I

- Pt ()LEI tT k1 (OL.++) I

p: 0 p(P22O

S ~2(Q+1)

2 (c2ik 2.
tk+1) (1-P2) F (e),$,CL.k+1;Y,++2;P P) (C.29)

L ai t 3 2 'tT
k=0

Therefore,

O(P2INT) =PRIF (P210,NT-2,NT,1 F P 2 (P2I0,N-2,NTNT+1,1)

+ PR FP210 N -2 NTNT+2,I) + PR F(P 210'N -2,N +1;NT+1,1)

+PtFp~I0,NT~1,N +1,NT+1,1) + PR F(P 2I0,NT1,N+1N+2,1)

PRF( t 'T T~T 6 t 1,T PNT+1 ,NTl1

PR 1 FP t 1,T 2,tT+2NT+, 2)

+ PRl2F(P 21I,NT-2,NT+2,NT+2,2) 
(.0

t~iIK.1) a 0. Thrfoe O(1NT F(1 ,N a ,2wihmks)(~N)aCF

11 t

p21
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Appendix D
I COWCIENT EVALUATION FOR THE CDr OF T= SAMPLE 3SCC UNDER

RAPID FLUCTUATION CONDITIONS
$ 

t

The expression for the Edgeworth series correction factor, F(Pt (NT),

g the cumulative probability function (CDF) of the sample MSCC contained seven

-' constants (CN's) which depend on the statistical properties of the fluctuation

model, Eqs. (C.5) and (C.22) of Appendix C. These constants will be evaluated

9. for the statistical fluctuation model presented in Chapter 2. The important

constants are:

C1  = 2(m1(2,0) " .1(1,0)2) (D.la)

C2  = 2(32(2,0) - 32(1,0)2) (D.lb)

C3 = 2(1(0,2)m2(0,2)- m1(Ot1) 2m2(0,1) (D.lc)

C4 = 2(mj(1,1)m2(0,1) - m1(1,0)m1(O,1)m2(0,1)) (D.1d)

:-. C5  = 2(m1(O,1)m2(1,1) - m2(1,0)m1(0,1)m2(0,1)) (D.le)

C02m201 a, 2 (D.1f)
C 6 a(,2)32(0,1) - 1(0,1)2m2(0,1)2

where

.4,"

rk= Sk + (D3)

Assume that Sk is Gamma distributed with mean Sk and M4 k degrees of free-

dos and Nk is also Gamma distributed with mean Nk and MNk degrees of freedom

as discussed in Chapter 2. Then, from Eq. (A.2) of Appendix A,
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aa.(1,O) =Sk +N. D'

-2 2

= ,g + -i)2 +k +~ (D.4b)

.k(O,1) = Mk r 1/2) - /2 (D. 4c)

uk(O 2) = Sg

mk 1 1 = E{(Sk+Nk~

r(Msk + 1/2) S1/2 SK 1/2_
S 1/2 + -Sk N k (D. 4d)

1/2 MS~~c

Substitute Eq. (D.4) into Eq. (D.1):

-12 -i,2
S1 2 S 1  HN1  ( - a

C1=2-. (D.5a)

C2 - -2 m
~2 N2

*~s 1/2) r(M52 + 1
12 2S (D.5o)32 141 (MS MS )s21/2 (ms 2) r m

= r(MS1 + 1/2) r'(MS2 + 1/2) -3/2 -1/2(Dd

ms (NS MS) 1  r(ms ) r(MS) ;1 1 2 1 2

= r(ms 1 + 1/2) r(MS2 + 1/2) -1/2 -3/2 (5
C5 1S2 (4SJMS2)1/2 ris)r(S 1 2

2

sis2 L - (m +~M2  1/2) r(MS2 + 1/2)) (.t
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According to Eqs. (2.17) and (2.18) of Chapter 2,

U 2 ISSNR 1 SNR 2  2
T(SNR + 1) (SNR2 + 1) s_

where

r(ms + 1/2) r(MS2 + 1/2)] 2m ~ ~BIAS = [ 1 ,7 11 (H ,

(MS H4S 1/2 I'(m45 r(my (D.6b)
12 1 2

is the bias factor, and

SM~k %I/Nk (D.6o)

Substitute Eqs. (D.5) and (D.6) into Eq. (C.20) of Appendix C. The CN's

become

SUR2 + MS/IMN SR 2 + MS21MN
C1 1 1 2 2 (D.Ta) -2

1 SI(SNR + 1) 2 MS2(SUR 2 + 1)2

C 1 /2

2 '= BI (1 - BIAS') (D.7b)

SNU1  SNR2
CM3  = MS Ml(SNR1 + 1) + M 2(sMR 2  1) (D.7)

P2

M4" CN BI (1 - BIAS) (D.7d)
"~~ V IA-'S

N CN 2CN 2CN (D.Te)5 3 -2C 1  2C 4

CH
NC = 2C C2 + CN (1p2  (D-7f)

6N 2 2 3 4T
ci7  = CM1 + 2CM2 - CN3 + C 4 (1 +p2) (D.T)

'a
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it 1 12 ~4SNRk=O,

CN1  CN7 = 1/MN1  1/MN2  (D.8a)I
1 2

CN 5 -2CN 1  (D. 8b)
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